

free

Setting up the application+ workspace
loadNibFile:owner:
loadNibFile:owner:withNames:
loadNibFile:owner:withNames:fromZone:
loadNibSection:owner:
loadNibSection:owner:withNames:
loadNibSection:owner:withNames:fromHeader:
loadNibSection:owner:withNames:fromZone:
loadNibSection:owner:withNames:fromHeader:

fromZone:
appName
setMainMenu:
mainMenu

Responding to notification applicationWillLaunch:
applicationDidLaunch:
applicationDidTerminate:

Changing the active application
activeApp
becomeActiveApp
activate:
activateSelf:
isActive
resignActiveApp
deactivateSelf

Running the event loop run
isRunning
stop:
runModalFor:
stopModal
stopModal:
abortModal
beginModalSession:for:

runModalSession:
endModalSession:
delayedFree:
sendEvent:

Getting and peeking at events currentEvent
getNextEvent:
getNextEvent:waitFor:threshold:
peekAndGetNextEvent:
peekNextEvent:into:
peekNextEvent:into:waitFor:threshold:

Journaling setJournalable:
isJournalable
masterJournaler
slaveJournaler

Handling user actions and events
applicationDefined:
hide:
isHidden
unhide
unhide:
unhideWithoutActivation:
powerOff:
powerOffIn:andSave:
rightMouseDown:
unmounting:ok:

Sending action messages sendAction:to:from:
tryToPerform:with:
calcTargetForAction:

Remote messaging setAppListener:
appListener
setAppSpeaker:
appSpeaker
appListenerPortName
replyPort

Managing Windows appIcon
findWindow:
getWindowNumbers:count:
keyWindow
mainWindow
makeWindowsPerform:inOrder:
setAutoupdate:
updateWindows
windowList
miniaturizeAll:
preventWindowOrdering

Managing the Windows menu setWindowsMenu:
windowsMenu
arrangeInFront:
addWindowsItem:title:filename:
changeWindowsItem:title:filename:
removeWindowsItem:
updateWindowsItem:

Managing Panels showHelpPanel:
orderFrontDataLinkPanel:

Managing the Services menu setServicesMenu:
servicesMenu
registerServicesMenuSendTypes:andReturnTypes:
validRequestorForSendType:andReturnType:

Managing screens mainScreen

colorScreen
getScreens:count:
getScreenSize:

Querying the application context
focusView
hostName

Reporting current languages systemLanguages

Using files openFile:ok:
openTempFile:ok:
fileOperationCompleted:

Responding to devices mounted:
unmounted:

Printing setPrintInfo:
printInfo
runPageLayout:

Color orderFrontColorPanel:
setImportAlpha:
doesImportAlpha

Terminating the application terminate:

Assigning a delegate setDelegate:
delegate

run

(void)abortModal

Aborts the modal event loop by raising the NX_abortModal exception, which is caught by runModalFor:, the method that
started the modal loop. Since this method raises an exception, it never returns runModalFor:, when stopped with this
method, returns NX_RUNABORTED. This method is typically invoked from procedures registered with
DPSAddTimedEntry(), DPSAddPort(), or DPSAddFD(). Note that you can't use this method to abort modal sessions,
where you control the modal loop and periodically invoke runModalSession:.

runModalFor:, runModalSession:, endModalSession:, stopModal, stopModal:

(int)activate:(int)contextNumber

Makes the application identified by contextNumber the active application. The argument contextNumber is the PostScript
context number of the application to be activated. Normally, you shouldn't invoke this method the Application Kit is
responsible for proper activation. Returns the PostScript context number of application that was previously active.

isActive, activateSelf:, deactivateSelf

(int)activateSelf:(BOOL)flag

Makes the receiving application the active application. If flag is NO, the application is activated only if no other
application is currently active. Normally, this method is invoked with flag set to NO. When the Workspace Manager
launches an application, it deactivates itself, so activateSelf:NO allows the application to become active if the user waits
for it to launch, but the application remains unobtrusive if the user activates another application. If flag is YES, the
application will always activate. Regardless of the setting of flag, there may be a time lag before the application activates
you should not assume that the application will be active immediately after sending this message.

Note that you can make one of your Windows the key window without changing the active application when you send a
makeKeyWindow message to a Window, you simply ensure that the Window will be the key window when the
application is active.

You should rarely need to invoke this method. Under most circumstances the Application Kit takes care of proper
activation. However, you might find this method useful if you implement your own methods for interapplication
communication. This method returns the PostScript context number of the previously active application.

activeApp, activate:, deactivateSelf, makeKeyWindow (Window)

(int)activeApp

Returns the active application's PostScript context number. If no application is active, returns zero.

isActive, activate:

addWindowsItem:aWindow
title:(const char *)aString
filename:(BOOL)isFilename

Adds an item to the Windows menu corresponding to the Window aWindow. If isFilename is NO, aString appears
literally in the menu. If isFilename is YES, aString is assumed to be a converted name with the name of the file preceding
the path (the way Window's setTitleAsFilename: method shows a title). If an item for aWindow already exists in the
Windows menu, this method has no effect. You rarely invoke this method because an item is placed in the Windows
menu for you whenever a Window's title is set. Returns self.

changeWindowsItem:title:filename:, setTitle: (Window), setTitleAsFilename: (Window)

appIcon

Returns the Window object that represents the application in the Workspace Manager (containing the application's title
and icon).

applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event. This is a vehicle in which you
provide whatever response you want, by overriding the default definition in a subclass or defining this method in the
delegate. Returns self.

(int)applicationDidLaunch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has launched. This is one of the
messages the Application will receive if it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationDidLaunch:, that message is sent to it. If the delegate doesn't
implement it, the method is handled by the Application subclass object (if you created one). The return is an arbitrary
integer your application defines and interprets it. If you neither provide a delegate method nor override in a subclass, the
default definition simply returns 0.

app:applicationDidLaunch: (Application delegate method), beginListeningForApplicationStatusChanges
(NXWorkspaceRequest protocol)

(int)applicationDidTerminate:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has terminated. This is one of the
messages the Application will receive if it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationDidTerminate:, that message is sent to it. If the delegate doesn't
implement it, the method is handled by the Application subclass object (if you created one). The return is an arbitrary
integer your application defines and interprets it. If you neither provide a delegate method nor override in a subclass, the
default definition simply returns 0.

app:applicationDidTerminate: (Application delegate method), beginListeningForApplicationStatusChanges
(NXWorkspaceRequest protocol)

(int)applicationWillLaunch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName is about to launch. This is one of
the messages the Application will receive if it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationWillLaunch:, that message is sent to it. If the delegate doesn't
implement it, the method is handled by the Application subclass object (if you created one). The return is an arbitrary
integer your application defines and interprets it. If you neither provide a delegate method nor override in a subclass, the
default definition simply returns 0.

app:applicationWillLaunch: (Application delegate method), beginListeningForApplicationStatusChanges
(NXWorkspaceRequest protocol)

appListener

Returns the Application object's ListenerÐthe object that will receive messages sent to the port that's registered for the
application's name. If you don't send a setAppListener: message before your application starts running, an instance of
Listener is created for you. (Note, however, that to communicate with the Workspace Manager to do such things as open
files, you should send messages to the object that represents the Workspace Manager, returned by the workspace class
method it responds to the NXWorkspaceRequest protocol.)

setAppListener:, appListenerPortName, run, + workspace

(const char *)appListenerPortName

Returns the name used to register the Application object's Listener. The default is the same name that's returned by the
Application object's appName method. If a different name is desired, this method should be overridden. Messages sent
by name to appListenerPortName will be received by your Application object.

checkInAs: (Listener), appName, NXPortFromName()

(const char *)appName

Returns the name under which the Application object has been registered for defaults. This name is also used for
messaging unless the messaging name was changed by overriding appListenerPortName.

appListenerPortName

appSpeaker

Returns the Application object's Speaker. You can use this object to send messages to other applications.

setSendPort: (Speaker)

arrangeInFront:sender

Arranges all of the windows listed in the Windows menu in front of all other windows. Windows associated with the
application but not listed in the Windows menu are not ordered to the front. Returns self.

removeWindowsItem:, makeKeyAndOrderFront: (Window)

becomeActiveApp

Sends the appDidBecomeActive: message to the Application object's delegate. This method is invoked when the
application is activated. You never send a becomeActiveApp message directly, but you can override this method in a
subclass. Returns self.

activateSelf:, appDidBecomeActive: (delegate method)

(NXModalSession *)beginModalSession:(NXModalSession *)session for:theWindow

Prepares the application for a modal session with theWindow. In other words, prepares the application so that mouse
events get to it only if they occur in theWindow. If session is NULL, an NXModalSession is allocated otherwise the
given storage is used. (The sender could declare a local NXModalSession variable for this purpose.) theWindow is made
the key window and ordered to the front.

beginModalSession:for: should be balanced by endModalSession:. If an exception is raised, beginModalSession:for:
arranges for proper cleanup. Do not use NX_DURING constructs to send an endModalSession: message in the event of
an exception. Returns the NXModalSession pointer that's used to refer to this session.

runModalSession:, endModalSession:

calcTargetForAction:(SEL)theAction

Returns the first object in the responder chain that responds to the message theAction. The message isn't actually
dispatched. Note that this method doesn't test the value that the responding object would return should the message be
sent specifically, it doesn't test to see if the responder would return nil. Returns nil if no responder is found.

sendAction:to:from:

changeWindowsItem:aWindow
title:(const char *)aString
filename:(BOOL)isFilename

Changes the item for aWindow in the Windows menu to aString. If aWindow doesn't have an item in the Windows
menu, this method adds the item. If isFilename is NO, aString appears literally in the menu. If isFilename is YES,
aString is assumed to be a converted name with the file's name preceding the path (the way Window's
setTitleAsFilename: places a title). Returns self.

addWindowsItem:title:filename:, setTitle: (Window), setTitleAsFilename: (Window)

(const NXScreen *)colorScreen

Returns the screen that can best represent color. This method will always return a screen, even if no color screen is
present.

(DPSContext)context

Returns the Application object's Display PostScript context.

(NXEvent *)currentEvent

Returns a pointer to the last event the Application object retrieved from the event queue. A pointer to the current event is
also passed with every event message.

getNextEvent:waitFor:threshold:, peekNextEvent:waitFor:threshold:

deactivateSelf

Deactivates the application if it's active. Normally, you shouldn't invoke this method the Application Kit is responsible
for proper deactivation. Returns self.

activeApp, activate:, activateSelf:

delayedFree:theObject

Frees theObject by sending it the free message after the application finishes responding to the current event and before it
gets the next event. If this method is performed during a modal loop, theObject is freed after the modal loop ends.
Returns self.

perform:with:afterDelay:cancelPrevious: (DelayedPerform informal protocol)

delegate

Returns the Application object's delegate.

setDelegate:

(BOOL)doesImportAlpha

Reports whether the application imports colors that include a value for alpha (opacity), and includes an opacity slider in
its ColorPanel. The default is YES.

setImportAlpha:

endModalSession:(NXModalSession *)session

Cleans up after a modal session. The argument session should be from a previous invocation of beginModalSession:for:.

runModalSession:, beginModalSession:for:

(int)fileOperationCompleted:(int)operation

Notification from the Workspace Manager that the file operation identified by operation has completed. The argument is
the integer returned by the method that requested the file operation, to wit performFileOperation:source:destination:files:
options: (part of NXWorkspaceRequest protocol).

If the delegate implements the method app:fileOperationCompleted:, that message is sent to it. If the delegate doesn't
implement it, the method is handled by the Application subclass object (if you created one). The return is an arbitrary
integer your application defines and interprets it. If you neither provide a delegate method nor override in a subclass, the
default definition simply returns 0.

findWindow:(int)windowNum

Returns the Window object that corresponds to the window number windowNum. This method is of primary use in
finding the Window object associated with a particular event.

windowNum (Window)

focusView

Returns the View whose focus is currently locked, or nil if no View's focus is locked.

lockFocus (View)

free

Closes all the Application object's windows, breaks the connection to the Window Server, and frees the Application
object.

(NXEvent *)getNextEvent:(int)mask

Gets the next event from the Window Server and returns a pointer to its event record. This method is similar to
getNextEvent:waitFor:threshold: with an infinite timeout and a threshold of NX_MODALRESPTHRESHOLD.

getNextEvent:waitFor:threshold, run, runModalFor:, currentEvent

(NXEvent *)getNextEvent:(int)mask
waitFor:(double)timeout

threshold:(int)level

Gets the next event from the Window Server and returns a pointer to its event record. Only events that match mask are
returned getNextEvent:waitFor:threshold: goes through the event queue, starting from the head, until it finds an event
matching mask. (Event Type Mask constants are described in the ªTypes and Constantsº section of the ªDisplay
PostScriptº chapter.) Events that are skipped are left in the queue. Note that getNextEvent:waitFor:threshold: doesn't
alter the window event masks that determine which events the Window Server will send to the application.

If an event matching the mask doesn't arrive within timeout seconds, this method returns a NULL pointer.

You can use this method to short circuit normal event dispatching and get your own events. For example, you may want
to do this in response to a mouse-down event in order to track the mouse while it's down. In this case, you would set
mask to accept mouse-dragged, mouse-entered, mouse-exited, or mouse-up events.

level determines what other procedures should be performed when the event queue is examined. These might include
procedures to deal with timed-entries, procedures to handle messages received on ports, or procedures to read new data
from files. Any such procedure that needs to be called will be called if its priority (specified when the procedure is
registered) is equal to or higher than level.

In general, modal responders should pass NX_MODALRESPTHRESHOLD for level. The main run loop uses a
threshold of NX_BASETHRESHOLD, allowing all procedures (except those registered with priority 0) to be checked and
invoked if needed.

peekNextEvent:waitFor:threshold:, run, runModalFor:

getScreens:(const NXScreen **)list count:(int *)numScreens

Gets screen information for every screen connected to the system. A pointer to an array of NXScreen structures is placed
in the variable indicated by list, and the number of NXScreen structures in that array is placed in the variable indicated by
numScreens. The list of NXScreen structures belongs to the Application object it should not be altered or freed. Returns
self.

getScreenSize:(NXSize *)theSize

Gets the size of the main screen, in units of the screen coordinate system, and places it in the structure pointed to by
theSize. Returns self.

getWindowNumbers:(int **)list count:(int *)numWindows

Gets the window numbers for all the Application object's Windows. A pointer to a non-NULL-terminated array of ints is
placed in the variable indicated by list. The number of entries in this array is placed in the integer indicated by
numWindows. The order of window numbers in the array is the same as their order in the Window Server's screen list,
which is their front-to-back order on the screen. The application is responsible for freeing the list array when done.
Returns self.

hide:sender

Collapses the application's graphicsÐincluding all its windows, menus, and panelsÐinto a single small window. The
hide: message is usually sent using the Hide command in the application's main Menu. Returns self.

unhide:

(const char *)hostName

Returns the name of the host machine on which the Window Server that serves the Application object is running. This
method returns the name that was passed to the receiving Application object through the NXHost default this name is set

either from its value in the defaults database or by providing a value for NXHost through the command line. If a value for
NXHost isn't specified, NULL is returned.

(BOOL)isActive

Returns YES if the application is currently active, and NO if it isn't.

activateSelf:, activate:

(BOOL)isHidden

Returns YES if the application is currently hidden, and NO if it isn't.

(BOOL)isJournalable

Returns YES if the application can be journaled, and NO if it can't. By default, applications can be journaled. Journaling
is handled by the NXJournaler class.

setJournalable:

(BOOL)isRunning

Returns YES if the application is running, and NO if the stop: method has ended the main event loop.

run, stop:, terminate:

keyWindow

Returns the key Window, that is, the Window that receives keyboard events. If there is no key Window, or if the key
Window belongs to another application, this method returns nil.

mainWindow, isKeyWindow (Window)

loadNibFile:(const char *)filename owner:anOwner

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner is the object that appears as the
ªFile's Ownerº in Interface Builder's File window. The objects and their names are read from the specified nib file into
storage allocated from the default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are sent finishUnarchiving
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the file filename is successfully opened and read, and nil otherwise.

Invoking loadNibFile:owner: is equivalent to invoking loadNibFile:owner:withNames:fromZone: when the additional
argument values indicate that names should also be loaded and that memory should be allocated from the default zone.

loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZone(), awake (Object), init (Object)

loadNibFile:(const char *)filename
owner:anObject
withNames:(BOOL)flag

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner is the object that appears as the
ªFile's Ownerº in Interface Builder's File window. The objects are read from the specified interface file into storage

allocated from the default zone. When flag is YES, the objects' names are also loaded. Names must be loaded if you use
NXGetNamedObject() to get at the objects, but are not otherwise required.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are sent finishUnarchiving
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the file filename is successfully opened and read.

Invoking loadNibFile:owner:withNames: is equivalent to invoking loadNibFile:owner:withNames:fromZone: when zone
specifies that memory should be allocated from the default zone.

loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZone(), awake (Object), init (Object)

loadNibFile:(const char *)filename
owner:anOwner
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner is the object that appears as the
ªFile's Ownerº in Interface Builder's File window. The objects are read into memory allocated from zone. When flag is
YES, the objects' names are also loaded. Names must be loaded if you use NXGetNamedObject() to get at the objects,
but are not otherwise required. Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the file filename is successfully opened and read.

awake (Object), init (Object)

loadNibSection:(const char *)name owner:anOwner

Loads interface objects and their names from the source identified by name. To find the source, the method searches as
follows:

·First, for a section named name within the _ _NIB segment of the application's executable file. (This is where earlier
versions of Interface Builder routinely put nib sections, but not where Project Builder puts them now, so the section
will be here only if the applications was compiled by an earlier version of Interface Builder.)

·Second, if no such section exists, the method searches certain language directories within the main bundle for a file with
name name and type ªnib, º andÐif it finds oneÐloads the interface objects from there. It searches the language
directories that the user specified for this application, or (if none) those specified by the user's default language
preferences (see systemLanguages).

·Third, if there's no file named name in the main bundle's relevant language directories, it looks for a file with name
name and type ªnibº in the main bundle (but outside the ª. lprojº directories).

The argument anOwner is the object that corresponds to the ªFile's Ownerº object in Interface Builder's File window.
The loaded objects are allocated memory from the default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are sent finishUnarchiving
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner: is equivalent to invoking loadNibSection:owner:withNames:fromZone: when the
additional arguments indicate that names should also be loaded and that memory should be allocated from the default
zone.

NXDefaultMallocZone(), + mainBundle (NXBundle), getPath:forResource:ofType: (NXBundle), awake (Object), init
(Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag

Loads interface objects and their names from the source identified by name. The source may be a section within the
executable file, or a file within the application bundle, as described above for the loadNibSection:owner: instance method.

The argument anOwner is the object that corresponds to the ªFile's Ownerº object in Interface Builder's File window.
The loaded objects are allocated memory from the default zone. When flag is YES, the objects' names are also loaded.
Names must be loaded if you use NXGetNamedObject() to get at the objects, but are not otherwise required.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are sent finishUnarchiving
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner:withNames is equivalent to invoking loadNibSection:owner:withNames:fromZone: when
the additional argument indicates that memory should be allocated from the default zone.

awake (Object), init (Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header

Loads interface objects from a section within a dynamically loaded object fileÐthat is, from a file other than those in the
application's main bundle. The argument header identifies the file, as returned by the function objc_loadModule(). The
argument name identifies a named section within the file's _ _NIB segment. When no such file exists, the method
searches the executable file's bundle, first within its language subdirectories, as described above for the loadNibSection:
owner: instance method.

The argument anOwner is the object that corresponds to the ªFile's Ownerº object in Interface Builder's File window.
Memory for the loaded objects is allocated from the default zone. When flag is YES, the objects' names are also loaded.
Names must be loaded if you use NXGetNamedObject() to get at the objects, but are not otherwise required.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are sent finishUnarchiving
and awake messages other objects are instantiated and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects required by the class but
stored separately (for example, because the same interface objects are also used by other classes).

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner:withNames:fromHeader: is equivalent to invoking loadNibSection:owner:withNames:
fromHeader:fromZone: when the additional arguments indicate that names should also be loaded and that memory should
be allocated from the default zone.

awake (Object), init (Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header
fromZone:(NXZone *)zone

Loads interface objects from a section within a dynamically loaded object fileÐthat is, from a file other than those in the
application's main bundle. The argument header identifies the file, as returned by the function objc_loadModule(). The
argument name identifies a named section within the file's _ _NIB segment. When no such file exists, the method
searches the executable file's bundle, first within its language subdirectories, as described above for the loadNibSection:
owner: instance method.

The argument anOwner is the object that corresponds to the ªFile's Ownerº object in Interface Builder's File window.
Memory for the loaded objects is allocated from the zone specified by zone. When flag is YES, the objects' names are
also loaded. Names must be loaded if you use NXGetNamedObject() to get at the objects, but are not otherwise required.
Objects that were archived in the nib file (standard objects from an Interface Builder palette) are sent finishUnarchiving
and awake messages other objects are instantiated and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects required by the class but
stored separately (for example, because the same interface objects are also used by other classes).

Returns non-nil if the section is successfully opened and read.

loadNibSection:owner:withNames:fromZone:, awake (Object), init (Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads interface objects and their names from the source identified by name. The source may be a section within the
executable file, or a file within the application bundle, as described above for the loadNibSection:owner: instance method.

The argument anOwner is the object that corresponds to the ªFile's Ownerº object in Interface Builder's File window.
When flag is YES, the objects' names are also loaded. Names must be loaded if you use NXGetNamedObject() to get at
the objects, but are not otherwise required. Memory for the loaded objects is allocated from the zone specified by zone.
Objects that were archived in the nib file (standard objects from an Interface Builder palette) are sent finishUnarchiving
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the section or file is successfully opened and read, and nil otherwise.

loadNibSection:owner:withNames:fromHeader:fromZone:, awake (Object), init (Object)

mainMenu

Returns the Application object's main Menu.

(const NXScreen *)mainScreen

Returns the main screen. If there is only one screen, that screen is returned. Otherwise, this method attempts to return the
key window's screen. If there is no key window, it attempts to return the main menu's screen. If there is no main menu,
this method returns the screen that contains the screen coordinate system origin.

screen (Window)

mainWindow

Returns the main Window. This method returns nil if there is no main window, if the main window belongs to another
application, or if the application is hidden.

keyWindow, isMainWindow (Window)

makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)flag

Sends the Application object's Windows a message to perform the aSelector method. The message is sent to each
Window in turn until one of them returns YES this method then returns that Window. If no Window returns YES, this
method returns nil.

If flag is YES, the Application object's Windows receive the aSelector message in the front-to-back order in which they
appear in the Window Server's window list. If flag is NO, Windows receive the message in the order they appear in the
Application object's window list. This order generally reflects the order in which the Windows were created.

The method designated by aSelector can't take any arguments.

masterJournaler

Returns the Application object's master journaler. Journaling is handled by the NXJournaler class.

slaveJournalar:

miniaturizeAll:sender

This method miniaturizes all of the receiver's application windows. Returns self.

(int)mounted:(const char *)fullPath

Invoked by the Workspace Manager when the device identified by fullPath has completed mounting. You shouldn't
directly send a mounted: message. This is one of the messages the Application will receive if it has previously sent the
Workspace Manager the message beginListeningForDeviceStatusChanges.

If the delegate implements the method app:mounted:, that message is sent to it. If the delegate doesn't implement it, the
method is handled by the Application subclass object (if you created one). The return value is an arbitrary integer your
application defines and interprets it. If you neither provide a delegate method nor override in a subclass, the default
definition simply returns 0.

unmounting:ok:, unmounted:

(int)openFile:(const char *)fullPath ok:(int *)flag

Responds to a remote message requesting the application to open a file. openFile:ok: is typically sent to the application
from the Workspace Manager, although an application can send it directly to another application. The Application
object's delegate is queried with appAcceptsAnotherFile: and if the result is YES, it's sent an app:openFile:type: message.
If the delegate doesn't respond to either of these messages, they're sent to the Application object (if it implements them).

The variable pointed to by flag is set to YES if the file is successfully opened, NO if the file is not successfully opened,
and 1 if the application does not accept another file. Returns zero.

app:openFile:type: (delegate method), openTempFile:ok:, openFile:ok: (Speaker)

(int)openTempFile:(const char *)fullPath ok:(int *)flag

Same as the openFile:ok: method, but app:openTempFile:type: is sent. Returns 0.

app:openTempFile:type: (delegate method), openTempFile:ok: (Speaker)

orderFrontColorPanel:sender

Displays the color panel. Returns self.

orderFrontDataLinkPanel:sender

Displays the data link panel. It does this by sending an orderFront: message to the shared instance of NXDataLinkPanel
(if need be, creating a new one). Returns self.

(NXEvent *)peekAndGetNextEvent:(int)mask

This method is similar to getNextEvent:waitFor:threshold: with a zero timeout and a threshold of
NX_MODALRESPTHRESHOLD.

getNextEvent:waitFor:threshold, run, runModalFor:, currentEvent, peekNextEvent:into:

(NXEvent *)peekNextEvent:(int)mask into:(NXEvent *)eventPtr

This method is similar to peekNextEvent:into:waitFor:threshold: with a zero timeout and a threshold of
NX_MODALRESPTHRESHOLD.

peekNextEvent:into:waitFor:threshold, run, runModalFor:, currentEvent

(NXEvent *)peekNextEvent:(int)mask
into:(NXEvent *)eventPtr
waitFor:(float)timeout
threshold:(int)level

This method is similar to getNextEvent:waitFor:threshold: except the matching event isn't removed from the event queue
nor is it placed in currentEvent instead, it's copied into storage pointed to by eventPtr.

If no matching event is found, NULL is returned otherwise, eventPtr is returned.

getNextEvent:waitFor:threshold:, run, runModalFor:, currentEvent

powerOff:(NXEvent *)theEvent

A powerOff: message is generated when a power-off event is sent from the Window Server. As a general rule, only the
Workspace Manager and login window should respond to this event. If the application was launched by the Workspace
Manager, this method does nothing instead, the Application object will wait for the powerOffIn:andSave: message from
the Workspace Manager. If the application wasn't launched from the Workspace Manager, this method sends the
delegate a powerOff: message, assuming there's a delegate and it implements the method. Applications that are not
launched from the Workspace Manager are not fully supported, and are not guaranteed any amount of time after receiving
this message. However, applications launched from the Workspace Manager can request additional time before shutdown
from within the app:powerOffIn:andSave method. Returns self.

app:powerOffIn:andSave: (delegate method), powerOffIn:andSave:

(int)powerOffIn:(int)ms andSave:(int)aFlag

You never invoke this method directly it's sent from the Workspace Manager. The delegate or your subclass of
Application will be given the chance to receive the app:powerOffIn:andSave message. The aFlag parameter has no
particular meaning and can be ignored. This method raises an exception, so it never returns.

app:powerOffIn:andSave: (delegate method)

preventWindowOrdering

Suppresses the usual window ordering behavior entirely. Most applications will not need to use this method since the
Application Kit support for dragging will call it when dragging is initiated.

printInfo

Returns the Application object's global PrintInfo object. If none exists, a default one is created.

registerServicesMenuSendTypes:(const char *const *)sendTypes andReturnTypes:(const char *const *)returnTypes

Registers pasteboard types that the application can send and receive in response to service requests. If the application has
a Services menu, a menu item is added for each service provider that can accept one of the specified send types or return
one of the specified return types. This method should typically be invoked at application startup time or when an object
that can use services is created. It can be invoked more than once its purpose is to ensure that there is a menu item for
every service that the application may use. The individual items will be dynamically enabled and disabled by the event

handling mechanism to indicate which services are currently appropriate. An application (or object instance that can cut
or paste) should register every possible type that it can send and receive. Returns self.

validRequestorForSendType:andReturnType: (Responder), readSelectionFromPasteboard: (Object method),
writeSelectionToPasteboard:types: (Object method)

removeWindowsItem:aWindow

Removes the item for aWindow in the Windows menu. Note that this method doesn't prevent the item from being
automatically added again, so you must use Window's setExcludedFromWindowsMenu: method if you want the item to
remain excluded from the Windows menu. Returns self.

changeWindowsItem:title:filename:, setExcludedFromWindowsMenu: (Window)

(port_t)replyPort

Returns the Application object's reply port. This port is allocated for you automatically by the run method, and is the
default reply port which can be shared by all the Application object's Speakers.

setReplyPort: (Speaker)

resignActiveApp

This method is invoked immediately after the application is deactivated. You never send resignActiveApp messages
directly, but you could override this method in your Application object to notice when your application is deactivated.
Alternatively, your delegate could implement appDidResignActive:. Returns self.

deactivateSelf:, appDidResignActive: (delegate method)

rightMouseDown:(NXEvent *)theEvent

Pops up the main Menu. Returns self.

run

Initiates the Application object's main event loop. The loop continues until a stop: or terminate: message is received.
Each iteration through the loop, the next available event from the Window Server is stored, and is then dispatched by
sending the event to the Application object using sendEvent:

A run message should be sent as the last statement from main(), after the application's objects have been initialized.
Returns self if terminated by stop:, but never returns if terminated by terminate:.

runModalFor:, sendEvent:, stop:, terminate:, appDidInit: (delegate method)

(int)runModalFor:theWindow

Establishes a modal event loop for theWindow. Until the loop is broken by a stopModal, stopModal:, or abortModal
message, the application won't respond to any mouse, keyboard, or window-close events unless they're associated with
theWindow. If stopModal: is used to stop the modal event loop, this method returns the argument passed to stopModal:.
If stopModal is used, it returns the constant NX_RUNSTOPPED. If abortModal is used, it returns the constant
NX_RUNABORTED. This method is functionally similar to the following:

stopModal, stopModal:, abortModal, runModalSession:

(int)runModalSession:(NXModalSession *)session

Runs a modal session represented by session, as defined in a previous invocation of beginModalSession:for:. A loop
using this method is similar to a modal event loop run with runModalFor:, except that with this method the application
can continue processing between method invocations. When you invoke this method, events for the Window of this
session are dispatched as normal this method returns when there are no more events. You must invoke this method
frequently enough that the window remains responsive to events.

If the modal session was not stopped, this method returns NX_RUNCONTINUES. If stopModal was invoked as the
result of event procession, NX_RUNSTOPPED is returned. If stopModal: was invoked, this method returns the value
passed to stopModal:. The NX_abortModal exception raised by abortModal isn't caught.

beginModalSession:, endModalSession, stopModal:, stopModal, runModalFor:

runPageLayout:sender

Brings up the Application object's Page Layout panel, which allows the user to select the page size and orientation.
Returns self.

(BOOL)sendAction:(SEL)aSelector to:aTarget from:sender

Sends an action message to an object. If aTarget is nil, the Application object looks for an object that can respond to the
messageÐthat is, for an object that implements a method matching aSelector. It begins with the first responder of the key
window. If the first responder can't respond, it tries the first responder's next responder and continues following next
responder links up the Responder chain. If none of the objects in the key window's responder chain can handle the
message, the Application object attempts to send the message to the key Window's delegate.

If the delegate doesn't respond and the main window is different from the key window, NXApp begins again with the first
responder in the main window. If objects in the main window can't respond, the Application object attempts to send the
message to the main window's delegate. If still no object has responded, NXApp tries to handle the message itself. If
NXApp can't respond, it attempts to send the message to its own delegate.

Returns YES if the action is applied otherwise returns NO.

sendEvent:(NXEvent *)theEvent

Sends an event to the Application object. You rarely send sendEvent: messages directly although you might want to
override this method to perform some action on every event. sendEvent: messages are sent from the main event loop (the
run method). sendEvent is the method that dispatches events to the appropriate responders the Application object handles
application events, the Window indicated in the event record handles window related events, and mouse and key events
are forwarded to the appropriate Window for further dispatching. Returns self.

setAutoupdate:

servicesMenu

Returns the Application object's Services menu. Returns nil if no Services menu has been created.

setServicesMenu:

setAppListener:aListener

Sets the Listener that will receive messages sent to the port that's registered for the application. If you want to have a
special Listener reply to these messages, you must either send a setAppListener: message before the run message is sent
to the Application object, or send this message from the delegate method appWillInit:, so that aListener is properly
registered. This method doesn't free the Application object's previous Listener object. Returns self.

appListenerPortName, appWillInit: (delegate method)

setAppSpeaker:aSpeaker

Sets the Application object's Speaker. If you don't send a setAppSpeaker: message before the Application object
initializes, a default Speaker is created for you. This method doesn't free the Application object's previous Speaker
object.

appWillInit: (delegate method)

setAutoupdate:(BOOL)flag

Turns on or off automatic updating of the application's windows. (Until this message is sent, automatic updating is not
enabled.) When automatic updating is on, an update message is sent to each of the application's Windows after each
event has been processed. This can be used to keep the appearance of menus and panels synchronized with your
application. Returns self.

updateWindows

setDelegate:anObject

Sets the Application object's delegate. The notification messages that a delegate can expect to receive are listed at the
end of the Application class specification. The delegate doesn't need to implement all the methods. Returns self.

delegate

setImportAlpha:(BOOL)flag

Determines whether your application will accept translucent colors in objects it receives. This affects colors imported by
the View method acceptsColor:atPoint:, or by NXColorPanel's dragColor:withEvent:fromView:. It has no effect on
internal programmatic manipulations of colors.

A pixel may be described by its color (values for red, blue, and green) and also by its opacity, measured by a coefficient
called alpha. When alpha is 1.0, a color is completely opaque and thus hides anything beneath it. When alpha is less then
1, the effective color is derived partly from the color of the object itself and partly from the color of whatever is beneath
it. When flag is YES, the application accepts a color that includes an alpha coefficient, and forces an alpha value of 1.0
for a source where alpha was not specified. In addition, when flag is YES, a ColorPanel opened within the application
includes an opacity slider.

When the Application has received a setImportAlpha: message with flag set to NO, all imported colors are forced to have
an alpha value of NX_NOALPHA, and there's no opacity slider in the ColorPanel. The default state is NO, do not import
alpha.

This method has the same effect as the NXColorPanel method setShowAlpha:. The only difference is that you can invoke
setImportAlpha: even before an NXColorPanel has been instantiated. Since the two methods set the same internal flag,
each can reverse the effect of the other.

Returns self.

doesImportAlpha, doesShowAlpha (NXColorPanel), setShowAlpha: (NXColorPanel)

setJournalable:(BOOL)flag

Sets whether the application is journalable. Returns self. See the class specification for NXJournaler for more
information on journaling.

isJournalable

setMainMenu:aMenu

Makes aMenu the Application object's main menu. Returns self.

mainMenu

setPrintInfo:info

Sets the Application object's global PrintInfo object. Returns the previous PrintInfo object, or nil if there was none.

printInfo

setServicesMenu:aMenu

Makes aMenu the Application object's Services menu. Returns self.

servicesMenu

setWindowsMenu:aMenu

Makes aMenu the Application object's Windows menu. Returns self.

windowsMenu

showHelpPanel:sender

Shows the application's Help panel. If no Help panel yet exists, the method first creates a default Help panel. If the
delegate implements app:willShowHelpPanel:, notifies it. Returns self.

slaveJournaler

Returns the Application object's slave journaler if one exists, or nil if not. The slave journaler is created automatically in
your application if these two conditions are met:

·Your application allows journaling (see setJournalable:)

·Some application running concurrently with yours (or your application itself) starts a journaling session

See the NXJournaler class specification for more information.

masterJournalar:

stop:sender

Stops the main event loop. This method will break the flow of control out of the run method, thereby returning to the
main() function. A subsequent run message will restart the loop.

If this method is applied during a modal event loop, it will break that loop but not the main event loop. Returns self.

terminate:, run, runModalFor:, runModalSession:

stopModal

Stops a modal event loop. This method should always be paired with a previous runModalFor: or beginModalSession:
for: message. When runModalFor: is stopped with this method, it returns NX_RUNSTOPPED. This method will stop
the loop only if it's executed by code responding to an event. If you need to stop a runModalFor: loop from a procedure
registered with DPSAddTimedEntry(), DPSAddPort(), or DPSAddFD(), use the abortModal method. Returns self.

stopModal:, runModalFor:, runModalSession:, abortModal

stopModal:(int)returnCode

Just like stopModal except argument returnCode allows you to specify the value that runModalFor: will return. Returns
self.

stopModal, runModalFor:, abortModal

(const char *const *)systemLanguages

Returns a list of the names of languages in order of the user's preference. If your application will respond to the user's
language preference, this method is the way to discover what the preferences are. The return is a NULL-terminated list of
pointers to NULL-terminated strings.

If the user has recorded preferences specific to the application now in use, the method returns them. If the user has
recorded no preferences for the application, but has recorded a global preference, the method returns the list of global
preferences. (Note that just because the user has recorded a preference doesn't mean than the language files are in fact
installed on the host that is executing the application.) If this method returns NULL, the user has no language preference.

terminate:sender

Terminates the application. (This is the default action method for the application's Quit menu item.) Each use of
terminate: invokes appWillTerminate: to notify the delegate that the application will terminate. If appWillTerminate:
returns nil, terminate: returns self control is returned to the main event loop, and the application isn't terminated.
Otherwise, this method frees the Application object and calls exit() to terminate the application. Note that you should not
put final cleanup code in your application's main() function it will never be executed.

stop, appWillTerminate: (delegate method), exit()

(BOOL)tryToPerform:(SEL)aSelector with:anObject

Aids in dispatching action messages. The Application object tries to perform the method aSelector using its inherited
Responder method tryToPerform:with:. If the Application object doesn't perform aSelector, the delegate is given the
opportunity to perform it using its inherited Object method perform:with:. If either the Application object or the
Application object's delegate accept aSelector, this method returns YES otherwise it returns NO.

tryToPerform:with: (Responder), respondsTo: (Object), perform:with: (Object)

(int)unhide

Responds to an unhide message sent from Workspace Manager. You shouldn't invoke this method invoke unhide:
instead. Returns zero.

unhide:

unhide:sender

Restores a hidden application to its former state (all of the windows, menus, and panels visible), and makes it the active
application. This method is usually invoked as the result of double-clicking the icon for the hidden application. Returns
self.

hide:, unhideWithoutActivation:, activateSelf:

unhideWithoutActivation:sender

Unhides the application but doesn't make it the active application. You might want to invoke activateSelf:NO after
invoking this method to make the receiving application active if there is no active application. Returns self.

hide:, activateSelf:

(int)unmounted:(const char *)fullPath

Invoked by the Workspace Manager when it has completed unmounting the device identified by fullPath. You shouldn't
directly send an unmounted: message. This is one of the messages the Application will receive if it has previously sent
the Workspace Manager the message beginListeningForDeviceStatusChanges.

If the delegate implements the method app:unmounted:, that message is sent to it. If the delegate doesn't implement it,
the method is handled by the Application subclass object (if you created one). The return is an arbitrary integer your
application defines and interprets it. If you neither provide a delegate method nor override in a subclass, the default
definition simply returns 0.

mounted:, unmounting:ok:

(int)unmounting:(const char *)fullPath ok:(int *)flag

Invoked and sent to all active applications when the Workspace Manager has received a request to unmount the device
identified by fullPath. This serves to warn applications that may be making use of the device. You shouldn't directly
send unmounting:ok: messages.

The method sets flag to point to YES to indicate that the Application assents to unmounting, and NO if it objects.

If the delegate implements the method app:unmounting:, that message is sent to it, and flag is set to whatever the delegate
returns. If the delegate doesn't implement app:unmounting:, the method is handled by the Application subclass object (if
you created one). The default behavior is to close all files on the device, and if the current working directory is on the
device, to change the current working directory to the user's home directory.

The return value is an arbitrary integer your application defines and interprets it. If you neither provide a delegate method
nor override in a subclass, the default definition simply returns 0.

updateWindows

Sends an update message to the Application object's visible Windows. When automatic updating has been enabled, this
method is invoked automatically in the main event loop after each event. An application can also send updateWindows
messages at other times to have Windows update themselves.

If the delegate implements appWillUpdate:, that message is sent to the delegate before the windows are updated.
Similarly, if the delegate implements appDidUpdate:, that message is sent to the delegate after the windows are updated.
Returns self.

setAutoupdate:, appWillUpdate: (delegate method), appDidUpdate: (delegate method)

updateWindowsItem:aWindow

Updates the item for aWindow in the Windows menu to reflect the edited status of aWindow. You rarely need to invoke
this method because it is invoked automatically when the edited status of a Window is set. Returns self.

changeWindowsItem:title:filename:, setDocEdited: (Window)

validRequestorForSendType:(NXAtom)sendType andReturnType:(NXAtom)returnType

Passes this message on to the Application object's delegate, if the delegate can respond (and isn't a Responder with its
own next responder). If the delegate can't respond or returns nil, this method returns nil, indicating that no object was
found that could supply typeSent data for a remote message from the Services menu and accept back typeReturned data.
If such an object was found, it is returned.

Messages to perform this method are initiated by the Services menu.

validRequestorForSendType:andReturnType: (Responder), registerServicesMenuSendTypes:andReturnTypes:,
writeSelectionToPasteboard:types: (Object), readSelectionFromPasteboard: (Object)

windowList

Returns the List object used to keep track of all the Application object's Windows, including Menus, Panels, and the like.
In the current implementation, this list also contains global (shared) Windows.

windowsMenu

Returns the Application object's Windows menu. Returns nil if no Windows menu has been created.

app:sender applicationDidLaunch:(const char *)appName

Implement this method to respond to an applicationDidLaunch: message sent from the Workspace Manager to sender (an
Application object), informing it that an application named appName has launched. This is one of the messages the
Application will receive if it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

applicationDidLaunch:

app:sender applicationDidTerminate:(const char *)appName

Implement this method to respond to an applicationDidTerminate: message sent from the Workspace Manager to sender
(an Application object), informing it that an application named appName has terminated. This is one of the messages the
Application will receive if it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

applicationDidTerminate:

app:sender applicationWillLaunch:(const char *)appName

Implement this method to respond to an applicationWillLaunch: message sent from the Workspace Manager to sender (an
Application object), informing it that an application named appName is about to launch. This is one of the messages the
Application will receive if it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

applicationWillLaunch:

app:sender fileOperationCompleted:(int)operation

Invoked when the Workspace Manager completes an asynchronous file operation requested by the application. The
operation argument is a tag identifying the particular operation requested. It's the same as the integer returned by the
method that initiated the request, performFileOperation:source:destination:files:options:.

performFileOperation:source:destination:files:options: (NXWorkspaceRequestProtocol)

app:sender mounted:(const char *)fullPath

Implement this method to respond to a mounted: message sent from the Workspace Manager to sender (an Application
object), informing it that a device (for example a floppy disk or an optical disk) has been mounted. This is one of the
messages the Application will receive if it has previously sent the Workspace Manager the message
beginListeningForDeviceStatusChanges.

mounted:

(int)app:sender
openFile:(const char *)filename
type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can open another file. The method
should attempt to open the file of type type and name filename, returning YES if the file is successfully opened, and NO
otherwise. (Although a file's type may by convention be reflected in its name, type is not a synonym for extension.
filename should not exclude part of the name just because it can sometimes be inferred from type.)

This method is also invoked from within openTempFile:ok: if neither the delegate nor the Application subclass responds
to app:openTempFile:type:

openFile:ok:, openTempFile:ok:, app:openFileWithoutUI:type:, app:openTempFile:type:

(NXDataLinkManager *)app:sender
openFileWithoutUI:(const char *)filename
type:(const char *)type

Sent to the delegate when sender (an Application) requests that the file of type type and name filename be opened as a
linked file. The file is to be opened without bringing up its application's user interface that is, work with the file will be
under programmatic control of sender, rather than under keyboard control of the user.

Returns a pointer to the NXDataLinkManager that will coordinate data flow between the two applications.

app:openFile:type:

(int)app:sender
openTempFile:(const char *)filename
type:(const char *)aType

Invoked from within openTempFile:ok: after it has been determined that the application can open another file. The
method should attempt to open the file filename with the extension aType, returning YES if the file is successfully
opened, and NO otherwise.

By design, a file opened through this method is assumed to be temporary it's the application's responsibility to remove
the file at the appropriate time.

openFile:ok:, openTempFile:ok:

app:sender powerOffIn:(int)ms andSave:(int)aFlag

Invoked from the powerOffIn:andSave: method after the Workspace Manager receives a power-off event. This method is
invoked only if the application was launched from the Workspace Manager. The argument ms is the number of
milliseconds to wait before powering down or logging out. The argument aFlag has no particular meaning at this time,

and can be ignored. You can ask for additional time by sending the extendPowerOffBy:actual: message to the Workspace
Manager from within your implementation of this method. The Workspace Manager will power the machine down (or
log out the user) as soon as all applications terminate, even if there's time remaining on the time extension.

extendPowerOffBy:actual: (Speaker)

app:sender unmounted:(const char *)fullPath

Implement this method to respond to an unmounted: message sent from the Workspace Manager to sender (an
Application object), informing it that the device identified by fullPath has been unmounted. This is one of the messages
the Application will receive if it has previously sent the Workspace Manager a beginListeningForDeviceStatusChanges
message.

unmounted, app:mounted:

(int)app:sender unmounting:(const char *)fullPath

Invoked when the device mounted at fullPath is about to be unmounted. This method is invoked from unmounting:ok:
and is invoked only if the application was launched from the Workspace Manager. The Application object or its delegate
should do whatever is necessary to allow the device to be unmounted. Specifically, all files on the device should be
closed and the current working directory should be changed if it's on the device.

unmounting:ok:, app:unmounted:

app:sender willShowHelpPanel:panel

Implement this to respond to notice that sender (an Application) has received a showHelpPanel: message and is about to
put up the Help panel identified by panel. The return value doesn't matter.

showHelpPanel:

(BOOL)appAcceptsAnotherFile:sender

Invoked from within Application's openFile:ok: and openTempFile:ok: methods, this method should return YES if it's
okay for the application to open another file, and NO if isn't. If neither the delegate nor the Application object responds
to the message, then the file shouldn't be opened.

openFile:ok:, openTempFile:ok:

appDidBecomeActive:sender

Implement to respond to notification sent from the Workspace Manager immediately after the Application becomes
active.

applicationDidLaunch:

appDidHide:sender

Invoked immediately after the application is hidden.

hide:, unhide:, appDidUnhide: (delegate method)

appDidInit:sender

Invoked after the application has been launched and initialized, but before it has received its first event. The delegate or
the Application subclass can implement this method to perform further initialization.

appWillInit: (delegate method)

appDidResignActive:sender

Invoked immediately after the application is deactivated.

becomeActiveApp, resignActiveApp

appDidUnhide:sender

Invoked immediately after the application is unhidden.

hide:, unhide:, appDidHide: (delegate method)

appDidUpdate:sender

Invoked immediately after the Application object updates its Windows.

updateWindows, updateWindowsItem:, appWillUpdate: (delegate method)

applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event. See the description of this
method under ªInstance Methods,º above.

appWillInit:sender

Invoked before the Application object is initialized. This method is invoked before the Application object has initialized
its Listener and Speaker objects and before any app:openFile:type: messages are sent to your delegate. The Application
object's Listener and Speaker objects will be created for you immediately after invoking this method if they have not been
previously created.

appDidInit: (delegate method), appListener, appSpeaker

appWillTerminate:sender

Invoked from within the terminate: method immediately before the application terminates. If this method returns nil, the
application is not terminated, and control is returned to the main event loop. If you want to allow the application to
terminate, you should put your clean up code in this method and return non-nil.

terminate:

appWillUpdate:sender

Invoked immediately before the Application object updates its Windows.

updateWindows, updateWindowsItem:, appDidUpdate: (delegate method)

powerOff:(NXEvent *)theEvent

Invoked from the powerOff: Application method only if the application wasn't launched from the Workspace Manager.
Only applications launched from the Workspace Manager are fully supported, so your application isn't guaranteed any
amount of processing time after this message is received. This notification is provided mainly for the use of alternate
login window programs.

powerOff:, powerOffIn:andSave:

