

free

Setting up the application+ workspace

loadNibFile:owner:

|loadNibFile:owner:withNames:

|loadNibFile:owner:withNames:fromZone:

|loadNibSection:owner:

|oadNibSection:owner:withNames:

|oadNibSection:owner:withNames:fromHeader:

|oadNibSection:owner:withNames:fromZone:

|loadNibSection:owner:withNames:fromHeader:
fromZone:

appName

setMainMenu:

mainMenu

Responding to notification applicationWillLaunch:

Changing the active application

Running the event loop run

applicationDidLaunch:
applicationDidTerminate:

activeApp
becomeA ctiveApp
activate:
activateSelf:
ISActive
resignActiveApp
deactivateSelf

IsRunning

stop:

runModalFor:
stopModal

stopModal:

abortM odal

beginM odal Session:for:

Journaling setJournalable:

Handling user actions and events

MUCINENUALLV UL TTIUL.VVAA LT UL LT GOl TUTA.

isJournalable
masterJournal er
slaveJournaler

applicationDefined:

hide:

isHidden

unhide

unhide:

unhideWithoutA ctivation:
power Off:
powerOffln:andSave:
rightMouseDown:
unmounting:ok:

Sending action messages sendAction:to:from:

Remote messaging setAppListener:

Managing Windows applcon

tryToPerform:with:
calcTargetForAction:

appListener

setA ppSpeaker:
appSpeaker
appListenerPortName
replyPort

findWindow:
getWindowNumbers:count:
keyWindow

mainWindow
makeWindowsPerform:inOrder:
setAutoupdate:

updateWindows

windowList

miniaturizeAll:
preventWindowOrdering

Managing the Windows menu set\WindowsM enu:

Managing Panels showHel pPanel:

windowsMenu

arrangel nFront:
addwWindowsltem:title:filename:
changeWindowsltem:title:filename:
removeWindowsltem:
updateWindowsltem:

orderFrontDatalL inkPanel:

Managing the Services menu setServicesMenu:

Managing screens mainScreen

servicesMenu
registerServicesM enuSendTypes.andReturnTypes:

validRequestorForSendType:andReturnType:

UpCH SHTIPETTC. UK.

fileOperationCompl eted:

Responding to devices mounted:
unmounted:

Printing setPrintinfo:
printinfo
runPagel ayout:

Color orderFrontColorPandl:
setlmportAlpha:
doeslmportAlpha

Terminating the application terminate:

Assigning a delegate setDelegate:
delegate

run

(int)activate: (int)contextNumber

Makes the application identified by contextNumber the active application. The argument contexth
context number of the application to be activated. Normally, you shouldn't invoke this method th
responsible for proper activation. Returns the PostScript context number of application that was p

iSActive, activateSelf:, deactivateSelf

(int)activateSelf:(BOOL)flag

Makes the receiving application the active application. If flag is NO, the application is activated o
application is currently active. Normally, this method isinvoked with flag set to NO. When the W
launches an application, it deactivates itself, so activateSelf:NO allows the application to become ¢
for it to launch, but the application remains unobtrusive if the user activates another application. |
application will always activate. Regardless of the setting of flag, there may be atime lag beforet
you should not assume that the application will be active immediately after sending this message.

Note that you can make one of your Windows the key window without changing the active applics
makeK eyWindow message to a Window, you simply ensure that the Window will be the key winc
application is active.

Y ou should rarely need to invoke this method. Under most circumstances the Application Kit take
activation. However, you might find this method useful if you implement your own methods for i
communication. This method returns the PostScript context number of the previously active appli

activeApp, activate:, deactivateSelf, makeKeyWindow (Window)

(int)activeApp
Returns the active application's PostScript context number. If no application is active, returns zer
iISActive, activate:

addWindowsltem:awWindow
title:(const char *)aString
filename:(BOOL)isFilename

Adds an item to the Windows menu corresponding to the Window aWindow. If isFilenameisNO
literally in the menu. If isFilenameis YES, aString is assumed to be a converted name with the ne
the path (the way Window's setTitleAsFilename: method shows atitle). If anitem for awindow a
Windows menu, this method has no effect. You rarely invoke this method because an itemis plac
menu for you whenever a Window's titleis set. Returns self.

changeWindowsltem:title:filename:, setTitle: (Window), setTitleAsFilename: (Window)

applcon

(int)applicationDidL aunch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has launcl
messages the Application will receive if it has previously sent the Workspace Manager the messag
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationDidLaunch:, that message is sent to it. If th
implement it, the method is handled by the Application subclass object (if you created one). Ther
integer your application defines and interpretsit. If you neither provide a delegate method nor ove
default definition ssimply returns O.

app:applicationDidLaunch: (Application delegate method), beginListeningForA pplicationStatusC
(NXWorkspaceRequest protocol)

(int)applicationDidTerminate:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has termir
messages the Application will receiveif it has previously sent the Workspace Manager the messag
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationDidTerminate:, that message is sent to it. |If
implement it, the method is handled by the Application subclass object (if you created one). Ther
integer your application defines and interpretsit. If you neither provide a delegate method nor ove
default definition ssimply returns O.

app:applicationDidTerminate: (Application delegate method), beginListeningForApplicationStatt
(NXWorkspaceRequest protocol)

(int)applicationWill Launch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName is about tc
the messages the Application will receiveif it has previously sent the Workspace Manager the me:
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationWillLaunch:, that messageis sent to it. If tf
implement it, the method is handled by the Application subclass object (if you created one). Ther
integer your application defines and interpretsit. If you neither provide a delegate method nor ove
default definition ssimply returns O.

app:applicationWillLaunch: (Application delegate method), beginListeningForApplicationStatus
(NXWorkspaceRequest protocol)

appListener

Returns the Application object's Listenerbthe object that will receive messages sent to the port th
application's name. If you don't send a setAppListener: message before your application starts rur
Listener is created for you. (Note, however, that to communicate with the Workspace Manager to
files, you should send messages to the object that represents the Workspace Manager, returned by
method it responds to the NXWorkspaceRequest protocol.)

checklnAs: (Listener), appName, NXPortFromName()

(const char *)appName

Returns the name under which the Application object has been registered for defaults. This name
messaging unless the messaging name was changed by overriding appListenerPortName.

appListenerPortName

appSpeaker
Returns the Application object's Speaker. Y ou can use this object to send messages to other appli

setSendPort: (Speaker)

arrangel nFront:sender

Arranges all of the windows listed in the Windows menu in front of all other windows. Windows
application but not listed in the Windows menu are not ordered to the front. Returns self.

removeWindowsltem:, makeKeyAndOrderFront: (Window)

becomeA ctiveApp

Sends the appDidBecomeActive: message to the Application object's delegate. This method isiny
application is activated. Y ou never send a becomeActiveA pp message directly, but you can overri
subclass. Returns self.

activateSelf:, appDidBecomeActive: (delegate method)

(NXM odal Session *)beginM odal Session:(NXM odal Session *)session for:theWindow

Prepares the application for amodal session with theWindow. In other words, prepares the applic:
events get to it only if they occur in theWindow. If sessionisNULL, an NXModal Session isalloc
given storage is used. (The sender could declare alocal NXModal Session variable for this purpos
the key window and ordered to the front.

beginM odal Session:for: should be balanced by endModal Session:. |f an exception israised, begin
arranges for proper cleanup. Do not use NX_DURING constructs to send an endM odal Session: m
an exception. Returns the NXModal Session pointer that's used to refer to this session.

runModal Session:, endModal Session:

calcTargetForAction:(SEL)theAction

Triename.(bOOUL)isHliename

Changes the item for awindow in the Windows menu to aString. If aWindow doesn't have an iter
menu, this method adds the item. If isFilenameis NO, aString appears literally in the menu. If isF
asString is assumed to be a converted name with the file's name preceding the path (the way Windc
setTitleAsFilename: places atitle). Returns self.

addWindowsltem:titleifilename:, setTitle: (Window), setTitleAsFilename: (Window)

(const NX Screen *)col orScreen

Returns the screen that can best represent color. This method will always return a screen, even if r
present.

(DPSContext)context
Returns the Application object's Display PostScript context.

(NXEvent *)currentEvent

Returns a pointer to the last event the Application object retrieved from the event queue. A pointe
also passed with every event message.

getNextEvent:waitFor:threshold:, peekNextEvent:waitFor:threshold:

deactivateSelf

Deactivates the application if it's active. Normally, you shouldn't invoke this method the Applica
for proper deactivation. Returns self.

activeApp, activate:, activateSelf:

delayedFree:theObject

Frees theObject by sending it the free message after the application finishes responding to the curr
gets the next event. If this method is performed during a modal loop, theObject is freed after the n
Returns self.

perform:with:afterDelay:cancel Previous. (DelayedPerform informal protocol)

delegate
Returns the Application object's delegate.
setDelegate:

endM odal Session:(NXM odal Session *)session
Cleans up after amodal session. The argument session should be from a previous invocation of be
runModal Session:, beginModal Session:for:

(int)fileOperationCompl eted: (int)operation

Notification from the Workspace Manager that the file operation identified by operation has comp
the integer returned by the method that requested the file operation, to wit performFileOperation: s
options: (part of NXWorkspaceRequest protocol).

If the delegate implements the method app:fileOperationCompl eted:, that messageissent toit. If
implement it, the method is handled by the Application subclass object (if you created one). Ther
integer your application defines and interpretsit. If you neither provide a delegate method nor ove
default definition ssimply returns O.

findWindow: (int)windowNum

Returns the Window object that corresponds to the window number windowNum. This method is
finding the Window object associated with a particular event.

windowNum (Window)

focusView
Returns the View whose focus is currently locked, or nil if no View's focusislocked.
lockFocus (View)

free

Closes all the Application object's windows, breaks the connection to the Window Server, and fre
object.

(NXEvent *)getNextEvent:(intymask

Gets the next event from the Window Server and returns a pointer to its event record. This methoc
getNextEvent:waitFor:threshold: with an infinite timeout and a threshold of NX_MODALRESPT}

getNextEvent:waitFor:threshold, run, runModalFor:, currentEvent

(NXEvent *)getNextEvent:(int)mask
waitFor:(double)timeout

LU UL LIS TTTESPIUINST LU aAa TTIVUSS-UUVWIT Vel IL LT UTucet WU I.l_'dL;K Lic 1HI0uUsc Wi 1to UUWIL 1T UHITo L
mask to accept mouse-dragged, mouse-entered, mouse-exited, or mouse-up events.

level determines what other procedures should be performed when the event queue is examined. T
procedures to deal with timed-entries, procedures to handle messages received on ports, or proced
from files. Any such procedure that needs to be called will be called if its priority (specified when
registered) is equal to or higher than level.

In general, modal responders should pass NX _MODALRESPTHRESHOLD for level. Themain
threshold of NX_BASETHRESHOLD, allowing all procedures (except those registered with prior
invoked if needed.

peekNextEvent:waitFor:threshold:, run, runModalFor:

getScreens:(const NX Screen **)list count:(int *)numScreens

Gets screen information for every screen connected to the system. A pointer to an array of NX Scr
in the variable indicated by list, and the number of NX Screen structures in that array is placed in tl
numScreens. The list of NXScreen structures belongs to the Application object it should not be al
self.

getScreenSize:(NX Size *)theSize

Gets the size of the main screen, in units of the screen coordinate system, and placesit in the struc
theSize. Returns self.

getWindowNumbers:(int **)list count:(int *)numWindows

Gets the window numbers for al the Application object's Windows. A pointer to a non-NULL-ter
placed in the variable indicated by list. The number of entriesin thisarray is placed in the integer
numwWindows. The order of window numbersin the array is the same as their order in the Windov
which istheir front-to-back order on the screen. The application is responsible for freeing the list
Returns self.

hide:sender

Collapses the application's graphicsbincluding all its windows, menus, and panelsbinto asingle
hide: message is usually sent using the Hide command in the application's main Menu. Returns st

unhide:

(const char *)hostName

Returns the name of the host machine on which the Window Server that serves the Application ob
method returns the name that was passed to the receiving Application object through the NXHost «

(BOOL)isHidden
Returns YES if the application is currently hidden, and NO if it isn't.

(BOOL)isJournalable

Returns YES if the application can be journaled, and NO if it can't. By default, applications can b
is handled by the NXJournaler class.

setJournal able:

(BOOL)isRunning
Returns Y ESif the application is running, and NO if the stop: method has ended the main event |o
run, stop:, terminate;

keyWindow

Returns the key Window, that is, the Window that receives keyboard events. If thereis no key Wi
Window belongs to another application, this method returns nil.

mainWindow, isKeyWindow (Window)

loadNibFile:(const char *)filename owner:anOwner

L oads interface objects from aNeXT Interface Builder (nib) file. The argument anOwner isthe ol
File's Owner® in Interface Builder's File window. The objects and their names are read from the
storage allocated from the default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the file filename is successfully opened and read, and nil otherwise.

Invoking loadNibFile:owner: is equivalent to invoking loadNibFile:owner:withNames:fromZone:
argument values indicate that names should also be loaded and that memory should be allocated fr

loadNibFile:owner:withNames:.fromZone:, NXDefaultMallocZone(), awake (Object), init (Obje

loadNibFile:(const char *)filename
owner:anObject
withNames:(BOOL)flag

L oads interface objects from aNeXT Interface Builder (nib) file. The argument anOwner isthe ol
File's Owner® in Interface Builder's File window. The objects are read from the specified interfe

N7 o o I e N4

loadNibFile:(const char *)filename
owner:anOwner
withNames:(BOOL)flag
fromZone:(NXZone *)zone

L oads interface objects from aNeXT Interface Builder (nib) file. The argument anOwner isthe ol
FFile's Owner® in Interface Builder's File window. The objects are read into memory allocated fre
YES, the objects names are also loaded. Names must be loaded if you use NX GetNamedObject()
but are not otherwise required. Objects that were archived in the nib file (standard objects from ar
palette) are sent finishUnarchiving and awake messages other objects are instantiated and are sent

Returns non-nil if the file filename is successfully opened and read.
awake (Object), init (Object)

loadNibSection:(const char *)name owner:anOwner

L oads interface objects and their names from the source identified by name. To find the source, tr
follows:

Firgt, for a section named name within the_ _NIB segment of the application's executablefile. (°
versions of Interface Builder routinely put nib sections, but not where Project Builder puts then
will be here only if the applications was compiled by an earlier version of Interface Builder.)

-Second, if no such section exists, the method searches certain language directories within the maii
name name and type @nib, ° andbif it finds onebloads the interface objects from there. It sear
directories that the user specified for this application, or (if none) those specified by the user's
preferences (see systemLanguages).

Third, if there's no file named name in the main bundl€e's relevant language directories, it |ooks fc
name and type 2nib° in the main bundle (but outside the 2 lproj° directories).

The argument anOwner is the object that corresponds to the @File's Owner® object in Interface Bui
The loaded objects are allocated memory from the default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner: is equivalent to invoking loadNibSection:owner:withNames:fron
additional arguments indicate that names should also be loaded and that memory should be allocat
zone.

NXDefaultMallocZone(), + mainBundle (NXBundle), getPath:forResource:of Type: (NXBundle)
(Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag

Invoking loadNibSection:owner:withNames is equivalent to invoking loadNibSection:owner:withl
the additional argument indicates that memory should be allocated from the default zone.

awake (Object), init (Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header

L oads interface objects from a section within adynamically loaded object filebthat is, from afile
application's main bundle. The argument header identifies the file, as returned by the function obj
argument name identifies a named section within thefile's __NIB segment. When no such file ex
searches the executable file's bundle, first within its language subdirectories, as described above f¢
owner: instance method.

The argument anOwner is the object that corresponds to the @File's Owner® object in Interface Bui
Memory for the loaded objects is allocated from the default zone. When flag is YES, the objects
Names must be loaded if you use NX GetNamedObject() to get at the objects, but are not otherwise

Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects require
stored separately (for example, because the same interface objects are also used by other classes).

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner:withNames.fromHeader: is equivalent to invoking loadNibSectiol
fromHeader:fromZone: when the additional arguments indicate that names should also be loaded &
be allocated from the default zone.

awake (Object), init (Object)

loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header
fromZone:(NXZone *)zone

L oads interface objects from a section within a dynamically loaded object filebthat is, from afile
application's main bundle. The argument header identifies the file, as returned by the function obj
argument name identifies a named section within thefile's __NIB segment. When no such file ex
searches the executable file's bundle, first within its language subdirectories, as described above f¢
owner: instance method.

The argument anOwner is the object that corresponds to the @File's Owner® object in Interface Bui
Memory for the loaded objects is allocated from the zone specified by zone. When flag is YES, th
also loaded. Names must be loaded if you use NXGetNamedObject() to get at the objects, but are
Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects require
stored separately (for example, because the same interface objects are also used by other classes).

Returns non-nil if the section is successfully opened and read.

Nl /e § o TR) R R A % el WAl W d | WA I AL PRI

executableflle or afilewithin the appllcatlon bundle as described above for the loadNibSection:¢

The argument anOwner is the object that corresponds to the @File's Owner® object in Interface Bui
When flag is YES, the objects names are also loaded. Names must be loaded if you use NXGetNe
the objects, but are not otherwise required. Memory for the loaded objectsis allocated from the zc
Objects that were archived in the nib file (standard objects from an Interface Builder palette) are
and awake messages other objects are instantiated and are sent an init message.

Returns non-nil if the section or file is successfully opened and read, and nil otherwise.
loadNibSection:owner:withNames:.fromHeader:fromZone:, awake (Object), init (Object)

mainMenu
Returns the Application object's main Menu.

(const NX Screen *)mainScreen

Returns the main screen. If thereis only one screen, that screen is returned. Otherwise, this methc
key window's screen. If thereisno key window, it attempts to return the main menu's screen. If
this method returns the screen that contains the screen coordinate system origin.

screen (Window)

mainWindow

Returns the main Window. This method returns nil if there is no main window, if the main windo
application, or if the application is hidden.

keyWindow, isMainWindow (Window)

makeWindowsPerform:(SEL)aSel ector inOrder:(BOOL)flag

Sends the Application object's Windows a message to perform the aSelector method. The messag
Window in turn until one of them returns Y ES this method then returns that Window. If no Windc
method returns nil.

If flag is YES, the Application object's Windows receive the aSelector message in the front-to-bac
appear in the Window Server's window list. If flagis NO, Windows receive the message in the or
Application object's window list. Thisorder generally reflects the order in which the Windows wi

The method designated by aSelector can't take any arguments.

masterJournal er
Returns the Application object's master journaler. Journaling is handled by the NXJournaler clas
slaveJournaar:

Invoked by the Workspace Manager when the device identified by full Path has completed mountir
directly send amounted: message. Thisisone of the messages the Application will receiveif it he
Workspace Manager the message beginListeningForDeviceStatusChanges.

If the del egate implements the method app:mounted:, that message is sent to it. If the delegate doe
method is handled by the Application subclass object (if you created one). The return valueisan
application defines and interpretsit. If you neither provide a delegate method nor override in a sut
definition simply returns 0.

unmounting:ok:, unmounted:

(int)openFile:(const char *)full Path ok:(int *)flag

Responds to a remote message requesting the application to open afile. openFile:ok: istypically <
from the Workspace Manager, although an application can send it directly to another application.

object's delegate is queried with appAcceptsAnotherFile: and if theresult is YES, it's sent an app:
If the delegate doesn't respond to either of these messages, they're sent to the Application object (|

The variable pointed to by flag is set to YES if the file is successfully opened, NO if the fileis not
and 1 if the application does not accept another file. Returns zero.

app:openFile:type: (delegate method), openTempFile:ok:, openFile:ok: (Speaker)

(int)openTempkile:(const char *)full Path ok:(int *)flag
Same as the openFile:ok: method, but app:openTempFileitype: is sent. ReturnsO.
app:openTempkFileitype: (delegate method), openTempFile:ok: (Speaker)

orderFrontCol orPanel :sender
Displays the color panel. Returns self.

orderFrontDatal inkPanel :sender

Displaysthe data link panel. It doesthis by sending an orderFront: message to the shared instance
(if need be, creating anew one). Returns self.

(NXEvent *)peekAndGetNextEvent: (int)mask

This method is similar to getNextEvent:waitFor:threshold: with a zero timeout and a threshold of
NX_ MODALRESPTHRESHOLD.

getNextEvent:waitFor:threshold, run, runModalFor:, currentEvent, peekNextEvent:into:

waitFor:(float)timeout
threshold:(int)level

This method is similar to getNextEvent:waitFor:threshold: except the matching event isn't remove
nor isit placed in currentEvent instead, it's copied into storage pointed to by eventPtr.

If no matching event isfound, NULL is returned otherwise, eventPtr is returned.
getNextEvent:waitFor:threshold:, run, runModalFor:, currentEvent

powerOff:(NXEvent *)theEvent

A powerOff: message is generated when a power-off event is sent from the Window Server. Asa
Workspace Manager and login window should respond to this event. If the application was launct
Manager, this method does nothing instead, the Application object will wait for the powerOffin:ar
the Workspace Manager. |If the application wasn't launched from the Workspace Manager, thism
delegate a powerOff: message, assuming there's a delegate and it implements the method. Applic:
launched from the Workspace Manager are not fully supported, and are not guaranteed any amoun
this message. However, applications launched from the Workspace Manager can request addition:
from within the app:powerOffin:andSave method. Returns self.

app:powerOffin:andSave: (delegate method), powerOffln:andSave:

(int)powerOffIn:(int)ms andSave:(int)aFlag

Y ou never invoke this method directly it's sent from the Workspace Manager. The delegate or yor
Application will be given the chance to receive the app:powerOffln:andSave message. The aFlag
particular meaning and can be ignored. This method raises an exception, so it never returns.

app:powerOffln:andSave: (delegate method)

preventWindowOrdering

Suppresses the usual window ordering behavior entirely. Most applications will not need to use th
Application Kit support for dragging will call it when dragging is initiated.

printInfo
Returns the Application object's global PrintInfo object. If none exists, adefault oneis created.

registerServicesM enuSendTypes:(const char * const *)sendTypes andReturnTypes:(const char

Registers pasteboard types that the application can send and receive in response to service request:
a Services menu, amenu item is added for each service provider that can accept one of the specifie
one of the specified return types. This method should typically be invoked at application startup ti
that can use servicesis created. It can beinvoked more than once its purpose isto ensure that ther
every service that the application may use. Theindividual itemswill be dynamically enabled and

automatically added again, so you must use Window's setExcludedFromWindowsMenu: method i
remain excluded from the Windows menu. Returns self.
changeWindowsltem:title:filename:, setExcludedFromWindowsMenu: (Window)

(port_t)replyPort

Returns the Application object's reply port. This port is alocated for you automatically by the rur
default reply port which can be shared by all the Application object's Speakers.

setReplyPort: (Speaker)

resignActiveApp

This method isinvoked immediately after the application is deactivated. Y ou never send resignAc
directly, but you could override this method in your Application object to notice when your applic:
Alternatively, your delegate could implement appDidResignActive:. Returns self.

deactivateSelf:, appDidResignActive: (delegate method)

rightMouseDown:(NXEvent *)theEvent
Pops up the main Menu. Returns self.

run

Initiates the Application object's main event loop. The loop continues until a stop: or terminate: n
Each iteration through the loop, the next available event from the Window Server is stored, and is
sending the event to the Application object using sendEvent:

A run message should be sent as the last statement from main(), after the application's objects hav
Returns self if terminated by stop:, but never returnsif terminated by terminate:..

runModalFor:, sendEvent:, stop:, terminate;, appDidinit: (delegate method)

(int)runM odal For:theWindow

Establishes a modal event loop for theWindow. Until the loop is broken by a stopModal, stopMoc
message, the application won't respond to any mouse, keyboard, or window-close events unless th
theWindow. If stopModal: is used to stop the modal event loop, this method returns the argument
If stopModal isused, it returns the constant NX_RUNSTOPPED. [f abortModal is used, it returns
NX_RUNABORTED. Thismethod isfunctionally similar to the following:

session are dispatched as normal this method returns when there are no more events. Y ou must in
frequently enough that the window remains responsive to events.

If the modal session was not stopped, this method returns NX_RUNCONTINUES. If stopModal \
result of event procession, NX_RUNSTOPPED isreturned. If stopModal: was invoked, this meth
passed to stopModal:. The NX_abortModal exception raised by abortModal isn't caught

beginModal Session:, endModal Session, stopModal:, stopModal, runModalFor:

runPagel ayout:sender

Brings up the Application object's Page Layout panel, which allows the user to select the page si z
Returns self.

(BOOL)sendAction:(SEL)aSelector to:aTarget from:sender

Sends an action message to an object. If aTarget isnil, the Application object looks for an object t
messagebthat is, for an object that implements a method matching aSelector. It begins with the fi
window. If thefirst responder can't respond, it tries the first responder's next responder and contit
responder links up the Responder chain. If none of the objectsin the key window's responder cha
message, the A pplication object attempts to send the message to the key Window's delegate.

If the delegate doesn't respond and the main window is different from the key window, NXApp be
responder in the main window. If objectsin the main window can't respond, the Application obje
message to the main window's delegate. If still no object has responded, NXApp triesto handle tt
NXApp can't respond, it attempts to send the message to its own delegate.

Returns Y ESif the action is applied otherwise returns NO.

sendEvent:(NX Event *)theEvent

Sends an event to the Application object. You rarely send sendEvent: messages directly although'
override this method to perform some action on every event. sendEvent: messages are sent from t
run method). sendEvent isthe method that dispatches events to the appropriate responders the Ap
application events, the Window indicated in the event record handles window related events, and r
are forwarded to the appropriate Window for further dispatching. Returns self.

setAutoupdate:

servicesMenu
Returns the Application object's Services menu. Returnsnil if no Services menu has been created
setServicesMenu:

setAppListener:alistener

Sets the Application object's Speaker. If you don't send a setA ppSpeaker: message before the Ap
initializes, a default Speaker is created for you. This method doesn't free the Application object's
object.

appWilllnit: (delegate method)

setAutoupdate:(BOOL)flag

Turns on or off automatic updating of the application's windows. (Until this message is sent, auto
enabled.) When automatic updating is on, an update message is sent to each of the application's W
event has been processed. This can be used to keep the appearance of menus and panels synchroni
application. Returns self.

updateWindows

setDel egate:anObject

Sets the Application object's delegate. The notification messages that a del egate can expect to rec
end of the Application class specification. The delegate doesn't need to implement all the method:

delegate

setimportAlpha:(BOOL)flag

Determines whether your application will accept translucent colorsin objectsit receives. This affe
the View method acceptsColor:atPoint:, or by NXColorPanel's dragColor:withEvent:fromView:.
internal programmatic manipulations of colors.

A pixel may be described by its color (values for red, blue, and green) and also by its opacity, mea
called alpha. When alphais 1.0, acolor is completely opague and thus hides anything beneath it.
1, the effective color is derived partly from the color of the object itself and partly from the color ¢
it. When flagis YES, the application accepts a color that includes an a pha coefficient, and forces
for a source where alphawas not specified. In addition, when flag is YES, a ColorPanel opened w
includes an opacity slider.

When the Application has received a setlmportAlpha: message with flag set to NO, all imported c
an aphavalue of NX_NOALPHA, and there's no opacity dider in the ColorPanel. The default stz
apha

This method has the same effect as the NX ColorPanel method setShowAlpha:.. The only differenc
setimportAlpha: even before an NXColorPanel has been instantiated. Since the two methods set tt
each can reverse the effect of the other.

Returns self.
doeslmportAlpha, doesShowAlpha (NXColorPanedl), setShowAlpha: (NXColorPanel)

setJournal able:(BOOL)flag

manMenu

setPrintinfo:info
Sets the Application object's global Printinfo object. Returns the previous Printinfo object, or nil |
printinfo

setServicesMenu:aMenu
Makes aMenu the Application object's Services menu. Returns self.
servicesMenu

setWindowsMenu:aMenu
Makes aMenu the Application object's Windows menu. Returns self.
windowsMenu

showHel pPanel :sender

Shows the application's Help panel. If no Help panel yet exists, the method first creates a default |
delegate implements app:will ShowHelpPanel:, notifiesit. Returns self.

slaveJournal er

Returns the Application object's slave journaler if one exists, or nil if not. The slavejournaler isc
your application if these two conditions are met:

Your application alows journaling (see setJournaable:)

-Some application running concurrently with yours (or your application itself) starts ajournaling s
See the NXJournaler class specification for more information.

masterJournalar:

stop:sender

Stops the main event loop. This method will break the flow of control out of the run method, there
main() function. A subsequent run message will restart the loop.

If this method is applied during a modal event loop, it will break that loop but not the main event |
terminate:, run, runModalFor:, runModal Session:

stopModal: (int)returnCode

Just like stopModal except argument returnCode allows you to specify the value that runiM odal For
self.

stopModal, runModalFor:, abortModal

(const char * const *)systemL anguages

Returns alist of the names of languages in order of the user's preference. If your application will |
language preference, this method is the way to discover what the preferences are. Thereturnisal
pointers to NULL-terminated strings.

If the user has recorded preferences specific to the application now in use, the method returns then
recorded no preferences for the application, but has recorded a global preference, the method retur
preferences. (Note that just because the user has recorded a preference doesn't mean than the lang
installed on the host that is executing the application.) If this method returns NULL, the user has

terminate:sender

Terminates the application. (Thisisthe default action method for the application's Quit menu iten
terminate: invokes appWill Terminate: to notify the delegate that the application will terminate. |1f
returns nil, terminate: returns self control is returned to the main event loop, and the application ist
Otherwise, this method frees the Application object and calls exit() to terminate the application. N
put final cleanup code in your application's main() function it will never be executed.

stop, appWillTerminate: (delegate method), exit()

(BOOL)tryToPerform:(SEL)aSelector with:anObject

Aidsin dispatching action messages. The Application object triesto perform the method aSelectc
Responder method tryToPerform:with:. If the Application object doesn't perform aSelector, the d
opportunity to perform it using its inherited Object method perform:with:. If either the Applicatiol
Application object's delegate accept aSelector, this method returns Y ES otherwise it returns NO.

tryToPerform:with: (Responder), respondsTo: (Object), perform:with: (Object)

(int)unhide

Responds to an unhide message sent from Workspace Manager. Y ou shouldn't invoke this metho
instead. Returns zero.

unhide:

unhide:sender

= B AR AR AR BRI T T T R T R e R AR TR R I AR T T T YR e e B gt T TR R AR R R R T A
invoking this method to make the receiving application active if thereis no active application. Rel
hide:, activateSelf:

(int)yunmounted: (const char *)fullPath

Invoked by the Workspace Manager when it has completed unmounting the device identified by ft
directly send an unmounted: message. Thisis one of the messages the Application will receive if
the Workspace Manager the message beginListeningForDeviceStatusChanges.

If the del egate implements the method app:unmounted:, that messageis sent to it. If the delegate
the method is handled by the Application subclass object (if you created one). Thereturnisan ark
application defines and interpretsit. If you neither provide a delegate method nor override in a sut
definition simply returns 0.

mounted:, unmounting:ok:

(int)unmounting:(const char *)fullPath ok:(int *)flag

Invoked and sent to all active applications when the Workspace Manager has received arequest to
identified by fullPath. This servesto warn applications that may be making use of the device. Yol
send unmounting:ok: messages.

The method sets flag to point to Y ES to indicate that the A pplication assents to unmounting, and N

If the delegate implements the method app:unmounting:, that message is sent to it, and flag is set t
returns. If the delegate doesn't implement app:unmounting:, the method is handled by the Applice
you created one). The default behavior isto close all files on the device, and if the current workin
device, to change the current working directory to the user's home directory.

The return value is an arbitrary integer your application defines and interpretsit. 1f you neither pre
nor override in a subclass, the default definition simply returns O.

updateWindows

Sends an update message to the Application object’'s visible Windows. When automatic updating
method is invoked automatically in the main event loop after each event. An application can also
messages at other times to have Windows update themselves.

If the delegate implements appWillUpdate:, that message is sent to the del egate before the window
Similarly, if the delegate implements appDidUpdate:, that message is sent to the delegate after the
Returns self.

setAutoupdate:, appWillUpdate: (delegate method), appDidUpdate: (del egate method)

updateWindowsltem:awindow

Updates the item for awindow in the Windows menu to reflect the edited status of awindow. Y ol
this method because it is invoked automatically when the edited status of a Window is set. Return

changeWindowsltem:title:filename:, setDocEdited: (Window)

PRl Y e TR R R AR BRI T R e R AR R RS N R T et B e B TR A

validRequestorForSendType:andReturnType: (Responder), registerServicesM enuSendTypes.and
writeSel ectionToPasteboard:types: (Object), readSelectionFromPasteboard: (Object)

windowL st

Returns the List object used to keep track of all the Application object's Windows, including Meni
In the current implementation, this list al'so contains global (shared) Windows.

windowsMenu
Returns the Application object's Windows menu. Returnsnil if no Windows menu has been creat

app:sender applicationDidL aunch:(const char *)appName

Implement this method to respond to an applicationDidL aunch: message sent from the Workspace
Application object), informing it that an application named appName has launched. Thisis one of
Application will receiveif it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

applicationDidLaunch:

app:sender applicationDidTerminate:(const char *)appName

Implement this method to respond to an applicationDidTerminate: message sent from the Workspe
(an Application object), informing it that an application named appName has terminated. Thisisc
Application will receiveif it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

applicationDidTerminate:

app:sender applicationWillLaunch:(const char *)appName

Implement this method to respond to an applicationWillLaunch: message sent from the Workspac
Application object), informing it that an application named appName is about to launch. Thisis ol
Application will receiveif it has previoudy sent the Workspace Manager the message
beginListeningForA pplicationStatusChanges.

applicationWillLaunch:

app:sender fileOperationCompl eted: (int)operation

object), informing it that a device (for example afloppy disk or an optical disk) has been mounted.
messages the Application will receive if it has previously sent the Workspace Manager the messag
beginListeningForDeviceStatusChanges.

mounted:

(int)app:sender
openkFile:(const char *)filename
type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can open anoth
should attempt to open the file of type type and name filename, returning YES if thefile is success
otherwise. (Although afile's type may by convention be reflected in its name, type is not a synon
filename should not exclude part of the name just because it can sometimes be inferred from type.)

This method is also invoked from within openTempFile:ok: if neither the delegate nor the Applica
to app:openTempkiletype:

openFile:ok:, openTempFile:ok:, app:openFileWithoutUl:type:, app:openTempFiletype:

(NXDatalinkManager *)app:sender
openFileWithoutUl:(const char *)filename
type:(const char *)type

Sent to the delegate when sender (an Application) requests that the file of type type and name filer
linked file. Thefileisto be opened without bringing up its application's user interface that is, wor
under programmatic control of sender, rather than under keyboard control of the user.

Returns a pointer to the NXDatal inkManager that will coordinate data flow between the two appli
app:openFiletype:

(int)app:sender
openTempFile:(const char *)filename
type:(const char *)aType

Invoked from within openTempFile:ok: after it has been determined that the application can open:
method should attempt to open the file filename with the extension aType, returning Y ES if the fil:
opened, and NO otherwise.

By design, afile opened through this method is assumed to be temporary it's the application's resy
thefile at the appropriate time.

openFile:ok:, openTempFile:ok:

app:sender powerOffIn:(int)ms andSave:(int)aFlag

Invoked from the powerOffIn:andSave: method after the Workspace Manager receives a power-of
invoked only if the application was launched from the Workspace Manager. The argument msist
milliseconds to wait before powering down or logging out. The argument aFlag has no particular |

Application object), informing it that the device identified by full Path has been unmounted. Thisi
the Application will receiveif it has previously sent the Workspace Manager a beginListeningForl
message.

unmounted, app:mounted:

(int)app:sender unmounting:(const char *)fullPath

Invoked when the device mounted at fullPath is about to be unmounted. This method isinvoked f
and isinvoked only if the application was launched from the Workspace Manager. The Applicatic
should do whatever is necessary to allow the device to be unmounted. Specifically, al files on the
closed and the current working directory should be changed if it's on the device.

unmounting:ok:, app:unmounted:

app:sender will ShowHel pPanel :panel

Implement this to respond to notice that sender (an Application) has received a showHel pPanel: m
put up the Help panel identified by panel. The return value doesn't matter.

showHelpPanel:

(BOOL)appA cceptsAnotherFile:sender

Invoked from within Application's openFile:ok: and openTempFile:ok: methods, this method shot
okay for the application to open another file, and NO if isn't. If neither the delegate nor the Applic
to the message, then the file shouldn't be opened.

openFile:ok:, openTempFile:ok:

appDidBecomeA ctive:sender

Implement to respond to notification sent from the Workspace Manager immediately after the Apy
active.

applicationDidL aunch:

appDidHide:sender
Invoked immediately after the application is hidden.
hide:, unhide:, appDidUnhide: (delegate method)

appDidinit:sender

pecomeActiveApp, resignActiveApp

appDidUnhide:sender
Invoked immediately after the application is unhidden.
hide:, unhide:, appDidHide: (delegate method)

appDidUpdate:sender
Invoked immediately after the Application object updates its Windows.
updateWindows, updateWindowsltem:, appWillUpdate: (delegate method)

applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event. See th
method under 3 nstance Methods,° above.

appWillInit:sender

Invoked before the Application object isinitialized. This method isinvoked before the Applicatio
its Listener and Speaker objects and before any app:openFile:type: messages are sent to your del e
object's Listener and Speaker objects will be created for you immediately after invoking this meth
previously created.

appDidinit: (delegate method), appListener, appSpeaker

appWill Terminate:sender

Invoked from within the terminate: method immediately before the application terminates. If this
application is not terminated, and control is returned to the main event loop. If you want to allow |
terminate, you should put your clean up code in this method and return non-nil.

terminate;

appWillUpdate:sender
Invoked immediately before the Application object updates its Windows.
updateWindows, updateWindowsltem:, appDidUpdate: (delegate method)

powerOff:(NXEvent *)theEvent

